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ABSTRACT

The process of perception to affective response of humans
is gated by a bottom-up saliency mechanism at the sensory
level. In specifics, auditory saliency emphasizes audio seg-
ments that need to be attended to cognitively appraise and
experience emotion. In this work, inspired by this mecha-
nism, we propose an end-to-end feature masking network for
audio emotion recognition in movies. Our proposed Audio-
Saliency Masking Transformer (ASTM) adjusts feature em-
bedding using two learnable masks; one of them cross-refers
to an auditory saliency map, and the other one is through self-
reference. By joint training for front-end mask gating and
the transformer as the back-end emotion classifier, we achieve
three-class UARs of 46.26%, 49.03%, 53.49% and 53.51% on
experienced arousal, experienced valence, intended arousal,
and intended valence, respectively. We further analyze which
acoustic feature categories that our saliency mask attends to
the most.

Index Terms— emotion recognition, auditory saliency,
affective multimedia, transformer

1. INTRODUCTION

Movie films contain realistic emotion elicitation needed to
trigger emotional experiences for audiences. The ability to
automatically recognize the audience’s affective viewing ex-
periences using content-based modeling is important for a
wide range of multimedia applications such as user-centered
recommendation [1] and intelligent indexing [2]. In fact,
most prior research in emotion recognition has focused more
on processing multiple data streams as measurements from
an individual but less on processing the affective media con-
tent itself as impact on an individual. In this work, we focus
on modeling movie content to recognize both induced and
experienced emotion states. Specifically, we target audio
tracks in movies. The audio track of a movie is not only
an information-rich modality which includes a multitude of
auditory components (e.g., audio events, speech, soundtrack
music, and so on) but also provides large-scaled realistic
media data for research.

Human’s perceptual process of taking in a sensory input
and triggering an internal emotional response involves three
major components, i.e, sensory, cognition, and emotion [3].
The hierarchical integration from signal-level auditory input

to high-level cognitive/appraisal process forms the final emo-
tion responses [4]. There are two different attention mecha-
nisms in this process: the bottom-up and top-down attention.
The bottom-up attention is known as “saliency”, which is a
signal-based attention that acts as a gating filter to naturally
gear our sensory attention [5]. Top-down attention, which is
a cognitive and task-driven attention, is also seen as a process
of gaining control for specific tasks at hand [6]. Handling
the extreme complexity in performing content-based model-
ing for emotion recognition has benefited from the use of the
top-down attention mechanism in deep networks [7].

The top-down attention mechanism, i.e., commonly used
in deep learning, can be seen as task-based saliency (e.g., de-
rived discriminatively based on emotion recognition task) but
not a signal-based (bottom-up) saliency [6]. Some research
has integrated bottom-up auditory saliency for speech tasks,
e.g., using an auditory saliency spectral mask for noise-robust
speech recognition [8], and improving cognitive load classifi-
cation by pooling saliency mask over time [9]. While integrat-
ing saliency to spectral representation has been useful, few
studies have utilized signal-level saliency for emotion tasks.
Work by Aldeneh and Provost is one of the few that integrated
region-based saliency on Mel Filterbank for speech emotion
recognition [10]. Very few, if any, have modeled this tiered
saliency-to-attention in content-based modeling for affective
multimedia applications. The challenge is likely due to the
fact that using spectrograms solely may not be sufficient for
emotion modeling while the auditory saliency mask is known
to derive only for the spectral representation.

Knowing that emotion processing involves a saliency to
attention scheme, we hypothesize that auditory saliency helps
provide a mechanism in “gating” the sensory input that helps
cognitively attend to the right information. In this work,
we model such a process by proposing an Audio-Saliency
Masking Transformer (ASMT). ASMT is an end-to-end
transformer network. The front-end is built by a trainable
feature masking and the back-end is a transformer classifier.
There are two learnable masks during training, one of them
is an acoustics descriptor self-adjusted mask, while another
is a cross-references to the auditory saliency map, i.e., ad-
justed auditory saliency mask. The linear combination of
acoustic descriptors is enhanced by these two masks and fur-
ther integrated before passing it to the transformer. The final
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Fig. 1. Our proposed framework of ASMT. H? is obtained by passing Emobase2010 (A-D) through the trainable linear fully
connected layer (FC) with dimension D;. Front-end representation H, is summarized by trainable « of the self-adjusted mask
(M"?) and the adjusted auditory mask (M ??); both masks are derived from trainable global pooling mechanism with parameters
W and W4, respectively. Finally, H, passes to a back-end transformer for emotion classification.

classification result reaches state-of-the-art 46.26%, 49.03%,
53.49% and 53.51% on three classes in four different at-
tributes: experienced arousal, experienced valence, intended
arousal, intended valence, respectively.

2. RESEARCH METHODOLOGY
2.1. Dataset

COGNIMUSE database is a multi-modal movie dataset [11].
It includes twelve half-hour continuous movie clips. Emotion
annotation is annotated in continuous time with arousal and
valence value within the range [-1,1]. There are two different
types: intended and experienced. Intended emotion indicates
the response that the movie tries to evoke in the viewer, with-
out taking into account whether it is actually successful. The
experienced emotion means to rate the actual emotional ex-
perience when watching movies [12]. In this work, we recog-
nize both intended and experienced emotion labels in twelve
movie clips. Following a similar setup [13], we average every
emotion annotation in an non-overlapping 5-seconds intervals
of audio track. Finally, we obtain 4414 audio segments as our
dataset where each sample has two different types of arousal
and valence ratings.

2.1.1. Discretizing Emotion Label

The original COGNIMUSE provides frame-wise continuous
emotion annotation, since our work focuses on recognizing
emotion for every 5 second of audio track segments, we
make it a classification problem. Since both emotions are
annotated by multiple subjects, we used the average values
from each subject. Seven classes discretization has been sug-
gested to quantize continuous time emotion label, however,
due to an imbalance of class distribution, we reduce seven
classes to three classes (with equally-spaced intervals) indi-
cating “high”, “mid”, “low” for both arousal and valence.
The experienced emotions are further re-scaled via min-max
normalization before applying discretization. The number of
samples per class is shown in Table 1.

Table 1. Discretized emotion label distribution.

Experienced Intended
Act Val Act Val
Low | 2845 695 | 1801 1578
Mid | 1480 2257 | 1428 874
High 89 1462 | 1185 1962

Type

2.1.2. Acoustic Descriptors (A-D)

We extract the emobase2010 feature set, which is a 1582 di-
mensional feature, extracted using the OpenSMILE toolkit
from each 5-seconds segment [14]. Emobase2010 feature
sets, which contain acoustic descriptors (A-D), are known to
capture various acoustic-prosodic properties of an audio seg-
ment. Previous works have also used emobase2010 to trace
affective content in the movie [15].

2.2. Auditory Saliency Map (ASM)

Auditory saliency map (ASM) is a mask representing the de-
gree of saliency in time-frequency domain [16]. The concept
of ASM is to model the human’s bottom-up auditory attention
using sets of 2D Gabor filters. Assume n is the time dimen-
sion, w is the frequency dimension, S (n,w) is log magnitude
spectrogram, and G(n,w) is 2D Gabor filters, convolution
output is Ry (n, w) = Sk(n,w)«G(n,w), k=0,..,K—1.
In our work, three individual G(n,w) are applied to capture
intensity, frequency contrast, and temporal contrast, respec-
tively. The 2D representations R, are up-sampled to Ry, by
using interpolation [8]. After the interpolation, subtracting
the center (c) with the surround (s) is applied: F(c,s) =
R.—Ry,c={0,..,K—3},5s ={c+A}, A={1,2}. The
result of center-surround difference F'(c, s) is thresholded by
zeros and normalized to local maximum. The final ASM
is the average of three individual center-surround difference
representations (intensity, frequency contrast, temporal con-
trast). We extract ASM with DFT size = 1024 and K = 4.
Mean pooling is done over 5-seconds segment on ASM re-
sults to obtain a 257 dimensional features representing audi-
tory saliency across different frequencies.



2.3. Audio-Saliency Masking Transfomer (ASMT)
The entire structure is shown in Fig. 1. Emobase2010 is first
passed through a linear fully-connected layer with dimension
D; in sets {32, 64} and a dropout rate 0.5 to reduce feature
dimension. ASMT is an end-to-end architecture that takes
a sequence 7' acoustic descriptors and output a sequence of
emotion labels; the transformer is trained as a back-end, and
the front-end is a composite saliency masked representations.
The composite representations used as front-end Hb €
RT*D1 5 obtained through a trainable parameter « that sums
the two representations H% € RT*P1 and Hb ¢ RT*D1:

HY = aH®™ + (1 — a)H® (1)

One of them is a self-masking representation (H®) while
another one is an auditory saliency masking representation
(HY). Masking is defined as a learnable matrix that can be
multiplied to a sequence 7' acoustic descriptors (A-D) seg-
ments to obtain the “masked” (enhanced) representations. We
will talk about each of the masks and the strategy in learning
the masking matrices below.

2.3.1. Masked Representations
Two different representations H°, H® are computed by:
Hab _ Hb ® Mab
HY — gt o b
©® is the element-wise product, the masks are in dimension
(T, Dy). The idea is to learn a global 2-D matrix correspond-
ing to the feature set (ASM and A-D or A-D and A-D). It

re-weights the importance of the original acoustic descriptors
to derive masked representation. Two different masks are de-

rived by: Mab — Fa A

M" = H"AP

where A* € RP2%D1 and AP € RP1*P1 are the global 2-D
matrix for deriving masks, and D5 is the hidden dimension
from another branch (ASM). M is an acoustic descriptor
self-adjusted mask (SA). M2 is an adjusted auditory saliency
mask (AAS), which is modulated from the ASM, integrating
the prior knowledge of spectral based auditory saliency. For
every value in each mask, it indicates the weight (importance)
of a particular feature dimension. It refers to either other di-
mensions of the same features (self-adjusted) or dimensions
of spectral saliency knowledge (ASM). We devise a trainable
global pooling mechanism in order to derive the value of each
of these masking matrices.

2.3.2. Trainable Global Pooling Mechanism
To identify the importance value of a feature sets H? at j di-
mension either through self-reference (self-adjusted) or cross-
reference (to ASM), we design a linear transformation W act-
ing as a global pooling matrix that take each dimension of
(i,7) in (H®, H") set to a scalar to learn a value in the mask.
Aza j = Wa(HaTai||HbT7j)7

exp(A;;) ()]
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This trainable matrix W € R*2T is designed to learn
the summarization of discriminatively-common portion be-
tween two different sets of the features then to act as a gat-
ing value to the feature sequence. The challenges in learn-
ing a mask when incorporating prior knowledge is that two
feature sets may be inherently different in dimensions with
distinct physical meanings (in this case, one is auditory spec-
trum and another one is acoustic descriptors). This trainable
global pooling mechanism obtains the importance in dimen-
sion of different feature sets to derive the masks, and it fur-
ther enforces the use of few parameters in W< to aggregate
the needed global pattern between feature sets. In Fig. 1,
AP | H® and WP replace A*, H* and W in equation (4)
respectively, and obtain an A-D self-reference mask M.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup

We run our experiments on four different types of emotion
labels, including experienced arousal, experienced valence,
intended arousal and intended valence. The batch size is 256
and sequence length (T" = 6, 30 seconds) for training. All
trainable parameters in models are learned using the cross en-
tropy loss on emotion class and updated by an Adam opti-
mizer with learning rate in ranges [le-4, 1e-3]. Early stop-
ping is applied. We do leave-one-movie-out cross validation,
i.e., 12 folds and leave extra ten percent data in each testing
set as validation set. The metric we use to evaluate model
performance is unweighted average recall (UAR).

3.2. Comparison Models

e LSTM [17] and AttendAffectNet (AAN) [15] is used to
track the emotion trace in COGNIMUSE. We refer to these
two models as our baseline. We re-implement the LSTM
model ourselves while AAN is re-implemented using the
author’s source code.

¢ Transformer (TFM): Transformer has been shown to
achieve state-of-the-art performance on the audio emo-
tion recognition task [18]. We used the encoder part of the
transformer for emotion classification tasks. The encoder
contains 2 layers and 2 heads. We use greedy search for
hidden dimensions for both linear fully connected layers
and transformer in sets {32, 64}. The last hidden layer
passes to the fully connected layer for emotion prediction.
In our proposed end-to-end model, transformer is jointly
trained as the back-end emotion classifier with different
masking methods.

¢ Self-Adjusted mask (SA): We mask acoustic descriptors us-
ing self-adjusted masks (1/®?) as described in section 2.

* ASM and ASM-SA: We mask acoustic descriptors with lin-
ear combination of the original ASM. ASM-SA is the train-
able o summation of ASM and SA masking.

e Adjusted Auditory Saliency mask (AAS) and ASMT:
Masking acoustic descriptors by AAS mask (M%), and
ASMT is our proposed model.



Table 2. The unweighted average recall (UAR) and the recall in each emotion class for all models.

Experienced Arousal

Experienced Valence

LSTM AAN TFM | ASM AAS

SA  ASM-SA ASMT

LSTM AAN TFM |ASM AAS| SA ASM-SA ASMT

Low 78.57 90.44 8398|8731 87358491 8128 9095 | 3.47 0.79 10.09| 552 7.99 | 5.36 8.68 9.31
Mid 28.82 29.27 29.27|28.89 39.95(34.54 3093 21.60 | 71.44 89.15 75.78|73.95 79.87|76.27 78.19  78.98
High 0.00 0.00 6.25 | 5.00 6.25 | 3.75 0.00 26.25 | 49.89 41.79 52.59|58.29 54.31|53.34 5641  58.81
UAR 38.66 40.10 42.02|40.40 44.52|41.07 3740  46.26 | 4550 43.90 46.15|45.92 47.20|4499 47.76  49.03

Intended Arousal

Intended Valence

LSTM AAN TFM |ASM AAS | SA

ASM-SA ASMT

LSTM AAN TFM |ASM AAS | SA ASM-SA ASMT

Low 41.77 61.51 58.03|[61.31 62.92|57.83 62.45 65.06 | 42.74 40.73 46.37[42.27 4529(45.13 50.15  49.38
Mid 62.85 51.86 55.80|54.36 50.36|63.74 5225  55.64 | 48.54 6231 52.28|58.88 54.82|54.31 56.15 54.57
High 20.46 23.75 3891|3548 38.05|36.05 3247  39.77 | 36.30 45.11 54.54|46.89 49.02|58.63 49.20  56.58
UAR 45.00 4590 50.92]50.38 50.44|52.54 49.06 53.49 | 4573 49.60 51.06[49.35 49.71|52.69 51.84 53.51

Table 3. The most attended feature categories.
Mask |Type|Dim|LD MFCC LMFB FO LSPF VFU SM JT

AAS |Exp | All| 5 2 1 4 2 3 11* 4
SA |Intd | All | 9* 0 0 7 1 6 8 1
Exp | Act| 1 1 1 2 1 4% 2 4%
ASMT| Exp | Val | 1 0 0 3 3 5 3 1
Intd | Act| 2 1 2 0 0 3 4% 4%
Intd | Val | 1 0 1 1 2 4% 4% 3

3.3. Result and Analysis

3.3.1. Performance Comparison

Table 2 shows complete results of audio emotion classifica-
tion of movies. Our proposed model ASMT obtains the best
UAR in all four different types of emotion classification tasks,
the improvement reaches 1.74%, 1.27%, 0.95%, 0.82% when
comparing to the best of the other models on experienced
arousal, experienced valence, intended arousal, intended va-
lence, respectively. In the second column result, it shows that
the use of adjusted auditory saliency masking (adjusted mask)
results in a more informative input than non-adjusted case
(original ASM), which is an improvement of 4.12%, 1.28%,
0.06% and 0.36% in four different emotion types respectively.
This shows the importance of the use of trainable pooling
mechanism to learn the mask by integrating feature sets of
different types and dimensions in nature.

Furthermore, we observe that AAS performs better on the
experienced emotion while SA is better on the intended emo-
tion. Emobase2010 feature sets are extracted directly from the
audio track of the movies, intuitively, modeling these content-
based audio features would work best for the intended emo-
tion recognition. However, it is quite intriguing to see that
by injecting auditory saliency (AAS), which is a perceptual
aspect of integrating mechanism of sensory processing [19],
it would help improve the experienced emotion recognition
which is closer to the audience’s true emotional responses.

3.3.2. Mask Analysis

We provide an analysis on which acoustic feature categories
are attended to the most in our masked representations,
and these analyses are carried out in the following settings:
(1) comparison between self-adjusted and adjusted auditory
saliency mask and (2) masks in our proposed model. There

are eight major categories in embase2010: loudness (LD),
MEFCC, logMelFreqBand (LMFB), F0, 1spFreq (LSPF), voic-
ingFinalUnclipped (VFU), shimmer (SM) and jitter (JT). To
identify which category dominate, we retrieve the feature cat-
egories corresponding to the top largest 25% absolute value
in the learned masks M** for each examined model.

(1) SA and AAS mask comparison: First, we examine
the mask within the model that improved the most for spe-
cific recognition tasks, i.e., SA on experienced and AAS on
intended. The upper part of table 3 shows the counting of se-
lected categories for the two different masks in eight feature
categories. We observe the mask in SA focuses on the loud-
ness, FO and shimmer, while the mask in AAS enhances shim-
mer the most. This seems to corroborate with past findings
indicating that loudness level is highly correlated to the ex-
pression of emotion [20], and the shimmer is also another im-
portant factor in the perceptual process of emotion for cross-
linguistic listeners [21].

(2) Mask in ASMT: We then examine the masks learned
in our proposed ASMT. In the lower part of Table 3, we
observe that the voicingFinalUnclipped, shimmer and jitter
are enhanced more than other feature categories. These three
categories are closely related to voice quality. It is interesting
to see that our front-end masking mechanism employed in
ASMT learns to emphasize largely on the dimension of voice
quality. Understanding how voice quality in audio tracks
encodes emotion elicitation or influences audience affective
viewing experiences will be an interesting direction to pursue.

4. CONCLUSIONS AND FUTURE WORK

In this work, we propose an end-to-end saliency-based mask-
ing transformer for emotion recognition in audio tracks. We
demonstrate that by integrating auditory saliency and consid-
ering both sensory-level saliency and task-level attention, it
learns a discriminative embedding that achieves the SOTA
classification performances. We also observe interestingly
that AAS masks are better for experienced emotion, while
SA masks provide more improvement in intended emotion.
In future work, we would continue to explore the connec-
tion between auditory saliency and other related tasks, such
as speech enhancement or stuttering event detection, and fur-
ther to extend to audio-visual multimodal framework.
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